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Dynamical mean-field approximation to small-world networks of spiking neurons:
From local to global and/or from regular to random couplings
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By extending a dynamical mean-field approximation previously proposed by the §dthdasegawa, Phys.
Rev. E 67, 041903(2003], we have developed a semianalytical theory which takes into account a wide range
of couplings in a small-world network. Our network consists of ndisynit FitzHugh-Nagumo neurons with
couplings whose average coordination numBenay change from localZ<N) to global couplingsZ=N
—-1) and/or whose concentration of random couplipgs allowed to vary from regulafp=0) to completely
random(p=1). We have taken into account three kinds of spatial correlations: the on-site correlation, the
correlation for a coupled pair, and that for a pair without direct couplings. The origiNadi@ensional
stochasticdifferential equations are transformed to 13-dimensiafeterministicdifferential equations ex-
pressed in terms of means, variances, and covariances of state variables. The synchronization ratio and the
firing-time precision for an applied single spike have been discussed as functidrendfp. Our calculations
have shown that with increasiny the synchronization iworsebecause of increased heterogeneous couplings,
although the average network distance becomes shorter. Results calculated by our theory are in good agreement
with those by direct simulations.
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I. INTRODUCTION however, couplings are neither local nor global with the de-
It is well known that a brain forms complex networks ?égﬁla?rf e{ﬁgdr%rgggrisclgﬁgrilggsb?rtvigﬁgnihseg:: ?thm;fegf
<l patch of corex may contain hosands of sl neu(0" as been paid temall-word (SW) netiorks with the
P y finite degree of heterogeneity in couplings, which is charac-

rons, eat_:h connecting with hu_ndreds or thousands of Othet(rarized by the high clustering and the small average distance
neurons in that same patch or in other patches through axons

. . A o etween nodefl3-14. The SW property is realized in vari-
and Qendnteg,. The underlyl_ng dynamics of |nd_|V|duaI NeU-5us kinds of biological, social, and technological systems
rons is described by Hodgkin-Huxley-type nonlinear differ-

ential equationgDE’s). Many theoretical studies have been S.UCh as the electric power grid, the movie-star collabora-
reported on dynamic§ of large-scale neuron networks Extentl-ons’ and the neuronal netwo_rk of the nematode warm
sive numerical calculations have been made by using.variouelegans[l&14' Some m_:glculatlons have been reported for
spiking neuron models such as Hodgkin-HuxiéyH) [1] eural networks of spiking neuron models as well as of
FitzHugh-Nagumo(FN) [2.3], and Hindmarsh—RoseHR), phase quelgl?—Za. It has _been shown that by mtroducmg.

o g:e coupling heterogeneity into SW networks, the synchroni-

vr\r/li(t)r? Eilhse[dﬂ'sgr:)?stf];rlsvcge;carloztggé? gi?g; Z?rﬁzlaa?orfnc;rrgﬁ ation isincreasedbecause the average distance in SW net-
PP ' orks is shorter than that in regular netwoft§-19,21-28

analytical methods such as the Fokker-Planck equd&hn L ;
. ; Recently, however, Nishikawat al. [20] have claimed that
the population density methda, 7], and the moment method the synchronization idecreasedvith including the coupling

[?glgr'tiian;let;rllﬁ C;mﬁ;gggr?g %TZ;L;'rﬁgtﬁéﬁuﬁggnse'_s heterogeneity in SW networks. Then it has been controver-
prop ' sial whether the synchronization in SW networks is better or

come difficult, whereN is the size of a given neuron net- . . i
work. The Fokker-Planck equation method is mainly appliedWorse than in regular networks. These studies on SW net

to N=w network with the mean-field and/or diffusion an- works have entirely relied on direct simulations, and it is
proxi?nations[lZ] The population method has been eﬁr desirable to make a study by using an analytical method.
ployed for a large-scale integrate-and-f{t€) neuron net- In the previous papers of Reff24] and [25] (which are

; eferred to as | and )] the present author proposed a semi-
work [6,7]. The moment method has been applied to FN and . . o L
HH neuron modelg8—11]. analytical dynamical mean-field approximatio(DMA)

Most of theoretical studies have assumed that couplings i{“Q?Q[B(Igmzbsgéﬂmngge#]r?nD?\?/S\engZ?SY%? OW;;Q l?rl:i-t

neg;on net\llvorkfoare IoczﬂZ<NZlor grl]obaIZ(Z:dN—(;L), FN neuron network, for which R-dimensional stochastic
andfor regulap=0) or random(p=1), whereZ andp de- DE’s are transformed to eight-dimensional deterministic

notes the average coordination number and the concentratigii g expressed by means, variances, and covariances of state
of random couplings, respectively. In real neuron networks, o i-bias In the subsequent 1l, DMA was applied to net-

works consisting of general spiking neurons, each of which
is described byM variables. MN-dimensional stochastic
*Email address: hasegawa@u-gakugei.ac.jp DE’s are transformed tdl., deterministic DE's whereNg,
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=M(M+2). The DMA theory was successfully applied to a respectively:G(x) stands for the sigmoid function given by
HH neuron network witiNg,=24 in Il. Advantages of DMA  G(x)=1/{1+exd—(x—6)/a]} with thresholdé# and widthe:
are (1) some qualitative properties of networks are derived) the coupling strengthc;; the coupling matrix given by;;
without numerical computations, ar@) the computational =c;=1 for a coupled(i,j) pair and zero otherwise, self-
time of DMA is much shorter than those of the momentcoupling terms being excludéd; =0). By changingZ value,
method[26] and direct simulations. As for the ite(@), for  our model given by Eqg1)—<(4) covers from local couplings
example, the former is thousands of times faster than thez<N) to global couplinggZ=N-1). We have studied the
latter for N=100 HH neuron network with 100 tria[25]. response of neuron networks to an external, single spike in-
The purpose of the present paper is to develop a semiangyt given by I®(t) with magnitudeA and spike widtht,,
lytical approach for SW neural networks of FN neurons Withapplied at thelinput time,,, ®(x) being the Heaviside func-

general couplings, extending our DMR&4,23. In I and Il, 5 Added white noiseg (t) are given by
interactions among neurons are assumed to be all-{@laH '

bal) couplings. For DMA to include local couplings in SW (&) =0, (5)
networks, we have taken into account variances and covari-
ances which express three kinds of spatial correlatigns: &g :,825” St—-t), (6)

on-site correlation(ii) the correlation for a coupled pair, and

(iii) that for an uncoupled pair without direct couplings. As-

suming that the heterogeneity is small, we have included it¥)

effects in order to discuss the synchronization in SW net-

works. U(z1) = J J dzU(z,t)Pr(2), (7
The paper is organized as follows. In Sec. Il, we have

derived DE's, applying the DMA to SW networks consisting Pr(z) denoting a probability distribution function for

of FN neurons which are coupled with the average coordinagN-dimensional random variables ({Xq})-

tion numberZ. The original N-dimensional stochastic DE’s An SW network is made after the Watts-Strogatz model

are transformed to 13-dimensional deterministic DE’s. IN[13]. Starting from the regular coupling for whiad = cy;;,

Sec. Il A, we report numerical calculations for regular net- Nch Coup”ngs amongJZ/Z Coup”ngs are rand0m|y modified

works by changing from local (Z<N) to global couplings  such thatcy; =0 is changed ta;=1 or vice versa. The con-

(Z=N-1). TheZ dependence of the firing-time accuracy andcentration of random couplings is given by

the synchronization ratio for an applied single spike is dis-

cussed. Numerical calculations for SW networks are reported = 2N°h, (8)

in Sec. Il B, where the effect of the concentration of random NZ

couplings is discussed. The final Sec. IV is devoted to con

clusion and discussion.

where the average dU(z,t)) for an arbitrary function of
(z,t) is given by

which is 0 and 1 for completely regular and random cou-
plings, respectively. We shall take into account the effect of
the heterogeneity given by

Il. SMALL-WORLD NETWORKS OF FN NEURONS &5 1
—1L==(cj - caij). 9
A. Adopted model and method Z Z
We have assumed thakunit FN neurons are distributed assuming it is small.
on a ring with the average coordination numizeand the After I, we will obtain equations of motions for means,

concentration of random couplings Dynamics of a single variances, and covariances of state variables. Variables spa-
neuroni in a given SW network is described by the nonlineartially averaged over the ensemble are defined by
DE's given by

1
Xt ==> % «=1,2 (10)
dxq: (t K Ki
P = Py (0] - 01+ 190 + 100 + 600, () N
and their means by
dxy(t _
X2|( ) — bX]_i(t) _ dei(t) +e (l =1to N) (2) /-’LK(I) <<XK(t)>>C1 (ll)
dt where the brackef:), denotes the average over the coupling
with configuration. As for variances and covariances of state vari-
ables, we consider three kinds of spatial correlatignson-
119(t) = 32 ¢;G(xy(1), (3)  site correlation(y), (i) the correlation for a coupled pai)
j and (iii) that for a pair without direct couplingsy):
19(t) = AB(t — i) Oty + t,y — ). (4) Yins fOri=j
XXM =1 Lens fori#jcy=1 (12

In Egs. (1)—(4), F[x(t)]=kx(t)[x(t)—a][1-x(t)], k=0.5, a
=0.1,b=0.015,d=0.003, ande=0 [8,9,24: x;; and x,; de-
note the fastvoltage variable and slowrecovery variable, wherex,\=1,2 and

Ner, fOri#j,c;=0,
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X,i(1) = X,i(t) = (V). (13 B. Equations of motions

I EG.(12) , Yo, e and 7, are defined by After some manipulations, we get the following DEthe

1
1) ={ =2 (X(t)x(1) ), 14 du
YerlV <N2i< (D )>>C (149 E_f0+f23’ll Cup+IZ(Jo+ 01b1) +lexy  (21)
d
Len(t) = < E > c.,<é><K.<t>axM<t)>> (15) f =buy ~ duy + e, (22)
C
7V W3 2 payy - cyrp + 232G 1+ o) + 2 (23
. (@yr1=Ctn. (91812 Qo) + 8%, (23
1 =6 = Ci){X,q(t) 8%yt .
<N(N 7 - 1)22( ] Ij)< KI() )\]( )>>C .
V2,
(16) 4 = 2= dy.), (24)
For a later purpose, we also define the spatially averaged
correlation given b dyio
g Y T =by 1+ (@=d)y12=Cya 0+ Q1812+ Qo)
1
Pl = <@2 2 (%4(0 axM(t>>> .y (25)
I ] c
dp 2)Zg;
=X ()X, (0))c (19 “at = 2@eamce) +< N )
where 6X,(t) =X, (t) - u,(t). It is noted thaty,, {x, e 2
andp,., are not independent, obeying the sum rule given by X[y11+ZREy 1+ (N=ZR=-1) 7y 1] + N (26)
NpK,)\ = Vi + ng,)\ + (N -Z- 1) i\ - (19) d
P22 _
In order to derive Eqs(14)«19), we have employed the d—ztz—Z(bpl,z‘dpz,z), (27)
decomposition
=6, +(L-gple+(1-cyl=6; +c;+(1-8; - ¢, dpi» <3291>
—=bpy+(@-d)pio—Cpoo+|——
(20) dt P11 P12~ CP22 N
with ¢;=0 X[y1,2+ZRG1 o+ (N=ZR=-1)m 5],  (28)
In calculating means, variances, and covariances given by
Egs.(11) and(14)—(19), we have assumed thé) the noise dfyq 2 _ 2]
intensity is weak(ii) the distribution of state variables takes dt (@dy,1—Cl1 ) + 230,
the Gaussian form, andii) the coupling heterogeneity of
sc;/Z is small. By using the first assumption, we expand X[y11+2ZCf 1+ (ZR-ZC-D 4], (29
DE’s given by Egs(1)—4) in a power series of fluctuations
around means. The second assumption may be justified by d§22_
some numerical calculations for F[9,27] and HH neuron dt 2(bgy 2= dg ), (30)
models[28,29. Based on the third assumption, the effect of
coupling fluctuations has been taken into account up to the oz
order of Q(5c;j/2)?). L2 e+ (@—d)y o— Clp o+ IG
Before closing Sec. Il A, we briefly summarize the intro- dt bt L2 22 '
duced variables and their meanings as folloitsthe num- X[y12+ZCli,+ (ZR-ZC- Dy 5], (3D

ber of neuronsZ, the average coordination numbegx;: the

concentration of random couplingd: the coupling strength:

Cij» t_he coupling matrix between neuronsand j: X the dLlez(aﬂ11‘C7}1 2)+( AYA ){gl[(ZR—ZC—l)gll
spatially average of the fagék=1) and slow(x=2) variables; dt ' ' N-Z-1 '
M & mean value oK,; ., e andz,,, the correlations +(N=2ZR+ZC _ 32
of on-site, a coupled pair, and an uncoupled pair, respec- ( )71~ Gobi}, (32)
tively. Readers who are not interested in mathematical de- d

tails, may skip to Sec. Il C where a summary of our method 2.2 _ 2(br -—d 33
is presented. d (b71.2= A2, (33
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dz o JZ
at =bn 1+ (@-d)m = Cyp ot (m) NZZE 2 2 Coij Cojk» (39
X{gi[(ZR-ZC-1)¢s
+(N=2ZR+ ZC)my 5] - Godbs}, (34 Ry = < NZZE 2 2 & 5c,k> , (40)
depy _ wherea=f;+3f3y; 1, f€=(1/€!)F O g,=(1/¢1)GY, C cor-
dt acpy = Chp + JZGORy, (35 responds to the clustering coefficient introduced in SW net-
works [13,14, R expresses the coupling connectivity, and
deb OR, is its fluctuation part, related discussions being given in
¢ =D dey, (36)  Sec. IV.

with C. Summary of our method

Equations of motions for,(t), ¥\(t), L), 7,1 (),
b, (1) = iE Soxc) ), k=1,2, (37) andp,,(t) are given by Eqs21)<40). In Egs.(35) and(36),
“ NZ< ! ¢, (t) (k=1,2) are new correlation functions which appear in
the process of calculating equations of motionygf,, etc.
The factorsC, R, and 6R, defined by Eqs(38)—(40) gener-

22 2 2 Coij CojkCoik: (38)  ally depend on the geometry of a given neuron network. For
TNZ a regular ring with everz, we getR=1 andC given by
|
.
0, forz<2
3/4-3/Z, for4<7Z < 2N/3
C={3/4-3/Z+9/4 -(3N-9/2)/z (41)
+(N2_3N+2)/22 f0r 2N/3$Z< N_l
\(1—1/2) forZ=N-1.

Figure 1 show< as a function oZ/N for N=100, 200, 500, the sum rule given by Eq20). In this study, we have chosen
and 1000. We note th&~0.75 for 0.1<Z/N<0.7 and that  nine correlations ofy,., {.\, andp,, as independent vari-
C—(1-1/2) asZ/N—(1-1/N). In the case of global cou- ables. Then the original Ntdimensional stochastic DE’s
plings (Z=N-1), however, we ge€=(1-1/Z) independent given by Egs.(1) and (2) have been transformed to 13-
of the geometry.sR, defined by Eq(40), which expresses dimensionaldeterministicDE’s.

fluctuations in heterogeneous couplings, is increased with in- It is worthwhile to explain the relation between the
creasing the concentration of random couplings{Fig. ~ present theory and |, where the origindl-Blimensional sto-
6(a)]. Among the 12 correlations such gs,, etc., given by chastic DE’s for regular, global couplings are transformed to

Egs.(14)—«17), nine correlations are independent because ogight-dimensional deterministic DE’s. In the present study
for the general coupling, we have to take into accognt

I and 7,,, in order to discriminate correlations between a
0 1 coupled pair and an uncoupled pair. However, in the limit of
) T Z=N-1 for regular, global couplings for whicR=1 and
0. i ZC=Z-17,, are not necessary because there are no un-
U N=1000 ] coupled pairs: prefactors qZR-2ZC-1) for 7, in Egs.
0. 500 4 (32) and (34) vanish with ¢,=0. Then the number of re-
fgg ] quired DE’s is reduced from 13 to 8. Equatiai24)—28) for
0. ring ] Mo Yerr @andp,, agree with Eqs(20—«27) in | [30].
o5 o5 D. Firing-time accuracy and synchronization
Z/N 1. Firing-time accuracy
FIG. 1. The clustering coefficien for a ring with regular cou- When we solve DE’s given by Eq$21)—(36), we may

plings (p=0) as a function oZ/N for N=100, 200, 500, and 1000. obtain various quantities relevant to firings in neuron net-
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—
[=]

10

works. The firing time of a given neurdnis defined as the 10

% [ ",':-“. _' ] [ ",':‘al N | "v;a-.l _' i
time when the variabley;(t) crosses the thresholé from 3 80H() -.,:':_._Z:—lo__ 80;@)};:?=Wj 80L(c) '::-:2’99-_
below: Eef 4 ] of & 4 b & ]

. Saf % 1 4 1 40 # ]
toe = {tlxy (1) = 6;%(t) > O} (42) § b W01 20 1 20 E ]
It has been shown that the distribution of firing timegpfis I f(')'5 Ti0 ’1‘65.' T0 100 i1'(').5 T
given by[24] t t
t-t\d[ nu _ 0.00
Z((t)"‘q)( 5 )d—t< J 1(t)>®(M1). (43) 0.004
o VLA 0.004
—dt=tp), for yy(t) —0 0'00(2]' /
with 00t
/
_ Vya(ty)
Sog = T, (44) FIG. 2. (Color onling The plots showing firings in a regular
1

neuron network foZ=(a) 10, (b) 50, and(c) 99 calculated by direct

whered expresses the normal distribution function, the av-simulationg(single trialg, and time courses () for Z=(d) 10, ()

erage firing timet; is implicitly defined by u,(t)=6, u, 50, and(f) 99 calculated by DMAsolid curve$ and direct simula-

= i1,(t;) and the dot denotes the time derivative. tions (dashed curves(8=0.01,J=0.002,N=100, andp=0.0). Ar-
Similarly, the firing time of an averaged variablg(t) is ~ "0WS In(@)(f) denote firing times.

defined as the time when the variab¥g(t) crosses the

thresholde from below: S =St), (51
: with
tog = {t/X4(t) = 6; X4(t) > O}. (45)
The distribution of firing times ofy is given by[24] St)=1- F;R;(:t)) - ( NPl,l(tlil/zfl,ll(t) - 1>, 52
t—t;\ d .
Zy(t) ~ CI)( f)—( e )@(,ul), (46) which is 0 and 1 for completely asynchronous and synchro-
Sog / dt\ Vpy 4(tp) nous states, respectively. The synchronization ratio shows

much variety depending on model parameters such as the
—8(t—-ty) for pyq(t) — 0 coupling strength(J), the noise intensityB3), the size of
cluster (N), the coordination numbe(Z), and the random

with . . . .
concentratiorn(p), as will be discussed in Sec. lll.
_ Vpra(ty)
Bog= T (47) IIl. CALCULATED RESULTS
A. Regular couplings
2. Synchronization ratio We have adopted same parameters9eD.5, «=0.5, 7

=10,A=0.10,t;,=100, andT,,=10 as in I[24]. DMA calcu-
lations have been made by solving E¢®1)—36) with the
use of the fourth-order Runge-Kutta method with the time
1 5 step of 0.01. We have performed direct simulations by using
Ry(t) = @2 2 (X =% O, (48)  also the fourth-order Runge-Kutta method with the time step
v of 0.01. Results of direct simulations are averages of 1000
trials for Z=< 20 (or N=<20) and those of 100 trials otherwise
=2(y11~ P10 (49 noticed. All quantities are dimensionless.

which vanishes in the completely synchronous state. From a_First we discuss the case of regular couplifigs 0), by
comparison of Eqs(23«25) with Egs. (26)28), we note changing the average coordination numgefrom Ipcal _(Z
that <N) to global couplings(Z=N-1). The plots in Figs.
2(a)-2(c) show firings in anN=100 neuron network with
regular couplings foiz=10, 50, and 99 with3=0.01 and
J=0.002 when a single external spike given by E4). is
applied. Figures @)—2(c) show that as increasing scatter-
Then, Ry(t) given by Eq. (49 becomes R(t) ing of firing times is reduced, which suggests an increase
=(1-1/N)y,1(t) =Rgx(t) in the asynchronous state, while in the firing accuracy and the synchronization. These are
Rs(t)=0 in the completely synchronous state. We define theesults of direct simulations with single trials. They are
synchronization ratiaat the firing timet; by [24] more clearly discussed with calculations using the DMA.

We discuss the synchronization in neuron networks, con
sidering the quantity given by

pK’)\:%, for J— 0. (50)
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0.0002————
L (©%n
0.0001- -
100 2
t
0.004———— 0.00006———— -
[ (b) Yu ] 0.00005 (d) p1 .
0.003 1 0.00004- :
0.002- 0.00003- .
I 1 0.00002- .
0.001 1 0.00001 ) -
] " 1 ] 10: . .i .
T80 200 8 —2 logo?)

FIG. 3. (Color onling Time courses ofa) u1, (b) y1.1, (C) {11, FIG. 4. (Color onling The Z dependence af) the correlations
and(d) p; , for £=0.01,J=0.002,N=100,Z=10, andp=0, solid  Of 1,1 (circles, ¢ ; (triangles, andp, ; (squaresat the firing time,
and dashed curves denoting results of DMA and direct simulations(p) the firing timest;, (c) the firing-time accuracy oft,, (circles,
respectively. At the bottom af), an input signal is plotted. Bog (squarel and u, (triangley, and(d) the synchronization ratio
at the firing time,S;, for $=0.01,J=0.002, and\N=100: filled and
open marks denote results of DMA and direct simulations, respec-

Figures 2d)-2(f) show time courses o§(t) calculated in ° :
tively. Results of{; ; and u; are only for DMA.

the DMA for Z=10, 50, and 99, whose magnitudes are in-
creased as increasing;, note differences of the ordinate
scales in Figs. @)—2(f). The synchronization ratio at firing the larger synchrong; for largerZ, having been shown in
times, &, is 0.0019, 0.0113, and 0.0295 fé~10, 50, and  Figs. 2a)-2f).
99, respectively, which shows an increased synchrony with

increasingZ.

We will discuss some details of the DMA calculation in ) ) ]
Figs. 3a)-3(d) which show time courses gf;, ¥, 1, {1 1, and Next we dlgcuss the case of SW couplings, by ch_angmg
p1 1, respectively, for regular couplingp=0) with 13;0_01, the concentration of ra_mdom couplings The plots in Figs.
J=0.002,N=100, andZ=10. Results of DMA expressed by (@-5¢) show firings in SW networks fop=0.0, 0.1, and
solid curves are in good agreement with those of direct simud-0, respectively, with3=0.005J=0.02,N=100, andz=10
lations depicted by dashed curves. Time coursesofy; 1, cglculated by dlre_ct sm_1ulat|ons with .smgle Frlals, whgn a
and py , shown in Figs. B)-3d) for local couplings(z single gxternal spike given by E@4) is applied. In this
=10) are not so different from those for global couplings SUPSection, we have adopted a smageand a larged than
having been reported in Fig. 1 of |, except for their magni-In Sec. llA to get more eyldent effe_cts qj.‘ _F|gl_Jres
tudes. For example, DMA calculations for the local coupling>(@—(¢) show that as increasing scattering of firing times
with Z=10 in the case of3=0.01, J=0.002, andN=100 |.s.gra(IjuaIIy increased, which sugge;ts a decrease in the
show that magnitudes of; 1, ¢; 1, andp, ; at the firing time firing-time accuracy and the synchronization. These results

of t=104.44 are 0.27%¥1072 0.475<10% and 0.320

B. SW couplings

100——=

10

X 1074, respectively. In contrast, for the global coupling with T T F ] ] N S
Z=99, magnitudes of 4, {; 1, andp, ; at the firing time of 'é 8¢-@ %.P_O'o‘. 8a-(b) %.p_m'. 84-) ?P_l'o'.
t=103.88 are 0.23510°2 0.693< 107, and 0.921 1074, ¢ ¢ 1 % ¥ 19 ¥ 1
respectively. 5;3'- 1 ‘;g.‘ ; ] ‘;g.' X ]
Figure 4a) shows theZ dependence of; 4, {; 1, andp; ; = %] E %] N % i
at the firing time withJ=0.002,3=0.01, and\N=100; filled 2 1(24 1 2 1(t14 106 2 1(%4 T
and open marks express results of DMA and direct simula-
tions, respectively. Results of;, ; and p; ; of DMA are in- 0.05————— 0.05———
distinguishable from those of direct simulations. With in- 0.04-©)p=01 3 004 ®p=10 ]
creasingZ, both ¢, ; and p, , are increased, whiley, ; is ooy E By ]
slightly decreased, as mentioned above. Zliependence of 0:01-_’/\‘- 0:01-:/.\_-
the firing timet; is plotted in Fig. 4b), which shows the ] -ong' N ng_ -

faster response for large@r This is due to the fact that by an
increased, u; is increased more rapidly to cross the thresh-
old level of 6. Thenu, att=t; is increased with increasirg)

as the chain curve in Fig(d) shows. Figure &) shows that
with increasingZ, the firing-time accuracy oftt,, is im-
proved while that ofét,g is independent oZ. The Z depen-
dence of the synchronization is plotted in Figdyshowing

S to be linearly increased for a small This clearly explains

oz b1 6700z 07T

FIG. 5. (Color onling The plots showing firings in a small-
world neuron network fop=(a)0.0, (b) 0.1, and(c) 1.0 calculated
by direct simulationgsingle trialy, and time courses o$(t) for
p= (d) 0.0, (e) 0.1, and(f) 1.0 calculated by DMA(solid curve$
and direct simulationgdashed curves(8=0.005,J=0.02 z=10,
andN=100). Arrows in (d)<f) denote firing times.
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{11 arises from the fact thaty, ;/dt in Eq. (23) has a con-
tribution from ¢, while dp, ;/dt and d{; ,/dt in Egs. (26)
and (29) have no direct contributions from it. Figurgbjy
shows that the firing time af=103.88 is independent g,
which is in accordance with a constant shown in Fig. 7c).
Figure {c) shows that with increasing, the firing-time ac-
curacy of ét,, becomes worse because of an increagegd
while that of &, is independent op. The p dependence of
S is depicted in Fig. @), which shows that the synchrony is
decreased with increasimg This clearly explains results of
smallerS; for largerp, having been shown in Figs(&—5(f).

FIG. 6. Thep dependence ofa) the factor 6R, and (b) the IV. CONCLUSION AND DISCUSSION

clustering coefficienC,, for Z=10, 20, and 50 witiN=100. . . . .
Generalizing a phenomenological analysis adopted in |

are more clearly seen in calculations with the use of DMA.[24] based on calculated results of DMA, we have tried to
Figures %d)—5(f) show time courses &) for p=0, 0.1, and  9€t an analytical expression f&. From calculated results
1.0, calculated in the DMA. The synchronization ratio atdiscussed in the previous section, we expamgandp, ; in
firing times S is 0.0256, 0.0224, and 0.0114, fpr0, 0.1, @ Series ofiZandp:
and 1.0, respectively. Althoug® for p=0.1 is nearly equal - _ _
to that forp=0.0, the time course &t) for p=0.1 is rather 717 vl ~aIZ1 ~ap) + -], (53
different from that forp=0.0.

This decrease 1% with increasingp mainly arises from
an increasedR,, as shown in Fig. @ where thep depen-

dence of R, is plotted for =10, 20, and 50 of a given \yherey, « 82 anday, a,, andb; are positive coefficients. We
ring with N=100. With increasingp, OR, is Im_early iN- have obtained an expression for , given by Eqs(53), be-
creased agRop/Z for a smallp. Figure &b) will be ex-  ¢ase the effect gb should vanish fod=0 or Z=0. Substi-

pL1= ﬁ)u +bJZ+ -o-), (54)

plained in Sec. IV. tuting Egs.(53) and(54) into Eq.(52), we get

Figure {a) shows thep dependence of, 4, {; 1, andp; 3
at the firing time with J=0.02, 8=0.005, N=100, and _([aq(1 —azp) +b,] 37 55
Z=10; filled and open marks express results of DMA 5= N-1 R (55)

and direct simulations, respectively. p£0.0, v, 4, {1 5, and ) ) )

p1, are 0.67X 1073 0.131x1073, and 0.23%X 104 re- The expression fo6; given by Eq.(55 well explains the
spectively. In contrast, ap=1.0, they are 0.1091072  behavior shown in Figs.(d) and {d). Dependences of the
0.144x 1073, and 0.23 1074, respectively. With increasing guantities onN, Z, J, and 3 for local regular couplings are

P, y11 is increased, while, ; and ¢, ; are almost constant. the same as those for all-to-all couplings having discussed in

The difference between the dependences of, 1, p; 1, and |- Typical examples ofN dependence of various quantities
’ ’ are shown in Figs.@)—8(d). Figures 8a) and §b) show that

p1.1< Nt while y; 4, {14 andtf are independent dfl, which
ylelds Aog xN~1/2 andétogoc NO, as shown in Fig. &). Figure
8(d) shows thatS; <Nt both for local and global couplings,
expressing that the synchronization is more easily realized in
smaller networks than in larger ones.

In an early stage of this study, we obtained DE’s given by
Egs.(21)<(34) with ¢,=¢,=0, but withC andR which are
replaced byC, andR,, respectively, given byfor details see
after Eq.(A22) in the Appendix

p < szz E E CI]CjkCIK> ' (56)

CiiCik ) - 57
FIG. 7. (Color onling The p dependence dfa) the correlations Rp= < NZ22 E E . Jk> (57

of y; 1 (circles), {; ; (triangleg, andp; ; (square}at the firing time, ) )
(b) the fmng timestf, (C) the ﬁring-time accuracy Oﬁto( (CirCleS, In this formulat|0n, the effect of the Coupllng heterogene|ty

g (squarey and juy (triangley, and(d) the synchronization ratio IS included in thep-dependent clustering coefficie@}, and
at the firing time, S, for £=0.005,J=0.02, N=100, andZ=10: coupling connectivityR,. The clustering coefficienC, de-
filled and open marks denote results of DMA and direct simula-notes an averaged fraction for given three nodes to be mutu-
tions, respectively. Results @f ; and «; are only for DMA. ally coupled[13,14. The p dependence of, is depicted in
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3 @) yn'ooc;océ-o;o-:; i © Btg

logip(111)

%

FIG. 9. The probabilityP(K) for a given neuron to hav&
couplings forp=0.0, 0.1, 0.2, and 1.0 witN=100 andZ=10 in a
log1o(N) 10g10(N) SW ring.

be noted that effects of heterogeneous couplings are taken
into account bysR, through the correlation functions, and

¢, in EQs.(35) and(36), which play important roles in dy-
namics of SW networks.

To summarize, we have developed a semianalytical theory
Jdor SW networks of spiking FN neurons, including three
kinds of spatial correlations: correlations of on-site, a
coupled pair, and an uncoupled pair. By changithgnd p,
we have performed model calculations of the response of the

. network to an external single spike. It has been shown that
and approache€,=Z/N at p=1. In contrast, the coupling g'e sp

L : : (i) whenZ is increased, the synchronization raBpand the
connectivityR, expresses an averaged fraction for given tWOfiring-time accuracyst,, are improvedFigs. 4¢) and 4d)],

no_des, W.hiCh are not hecessarily coupled, to have a COMMQPhich arises from a decrease 1 1 and an increase ip; 4,
neighboring nodeR, in Eq. (57) may be rewritten as and(ii) whenp is increased, botS, and ét,, become worse
[Figs. 1c) and 7d)] due to an increase ity; ; induced by
2 K?P(K) = _K2 (58)  fluctuations in the coupling heterogeneity.

Item (i) is easily understood. The result 8 in item (ii)
where the overline denotes the average d¥(gf) expressing is consistent with that of Ref20]. It, however, contradicts
the probability for a given neuron to hakecouplings[31].  some calculation$17-19,21-28 which have claimed that
Itis easy to see tha, is given byR,=1+4R, [Eqgs.(60) and the synchronization in SW networks is better than that in
(61)], the p dependence 0BR, being plotted in Fig. @). regular networks, since communication between neurons is
Unfortunately, results calculated with the use@f andR, ~ more efficient because of the shorter characteristic path
for finite p were not in good agreement with those of directlength L (as for thep dependence of, see Fig. 2 of Ref.
simulations because effects of coupling heterogeneity are ndi3])- Our semianalytical theory with the use of the DMA,
proper|y taken into account in such DE’s. which is valid for weak nOlSdﬁ< 1) and small COUpllng

After several tries, we have obtained DE’s having beerheterogeneity(éR,<1), has shown that the synchrony of
given by Egs.(21)—36). C, R, and 6C, given by Eqs. SW networks depends oR, C, and 6R, given by Egs.
(38)—(40) may be expressed in terms 6f andR, as[31] (38)—(40), but it is not affected by the average path lenigth
In particular, 6R,, ¢4, and ¢, have been shown to play cru-

FIG. 8. (Color onling The N dependence af) the correlations
of y; 1 (circles), {; ; (triangleg, andp; ; (squaregat the firing time,
(b) the firing timest;, (c) the firing-time accuracy o#t,, (circley
and dtyg (squarey and (d) the synchronization ratio at the firing
time S (B8=0.01,J=0.002,p=0, N=100, andZ=10): filled and
open marks denote results of DMA and direct simulations, respec
tively. In (d) results for global coupling&Z=N-1) are also shown.

Fig. 6(b) which shows that with increasing C, is decreased

C=Co, (59) cial roles in the dynamics of SW neural networks. Although
item (ii) discussed above relies on the definition of the syn-
R=Ry=1, (600 chronization ratio ofS(t) given by Eq.(52), this conclusion
is not changed even if we adopt an alternative measure for
1 — .
SRy=R,~ Ry= —5(K - K)2, 61) the synchrony. For example, when we empRygiven by

Eqg. (49), Ry is increased with increasing because of an

— increasedy; ;, which again signifies the worse synchroniza-
with Z=K. Figure 9 shows$(K) for p=0.0, 0.1, 0.2, and 1.0 tion in SW networks. The semianalytical theory developed in
with N=100 andZ=10. In the limit of p=0, P(K)(=6k 2) is  this paper can be applied not only to SW neural networks but
the delta function. With increasing, P(K) has the distribu- also to a wide class of complex SW networks. When we
tion centered aK=Z. In the limit of p=1, P(K) approaches apply our theory to a general SW network in which the dy-
the Poisson distributioil6]. Figure a) shows that with namics of each node is described Mydimensional stochas-
increasingp, R, is increased, whileC, is decreased as tic DE’s, we getNgdimensional deterministic DE's where
shown in Fig. §b). An increasedsR, yields an increase in Neg=M(3M+7)/2. For exampleN.,=5 for Langevin model
711, by which & is decreased andt,, is increased. It should (M=1), Ngq=13 for FN model(M=2), andNg,=38 for HH
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model (M=4). ltems (i) and (ii) [and also Eq(55)] which dy.r _< 1E <[ax (d@(m> . (déx"i>é)( }>>
i — =\ G X i '

have been derived for FN neuron model, are expected to hold "~ y; N dt dt

for any SW network.
The present approach shares in its advantages with the (A4)

original DMA previously proposed in (1) some results may

be derived without numerical calculations because of itsdZ, < EE <{ (%) +(%>&( }>>

semianalytical nature, an(®) a computational time for a ¢t NZ< Gij Ai ’

large-scale system by DMA is much shorter than that by ¢

direct simulations. By extending the ring geometry adopted (A5)
in this paper, we may discuss the response of more realistic

synfire-chain-type SW network®4,32. In the present pa-  9Pu _ Sy { (dﬁl) . (%)& }

per, we have neglected the transmission time delay. Because dt dt dt N .

the average path lengthbecomes shorter by the appearance AG
of shortcuts[13-16, the response speed is expected to be (AB)
improved in SW networks with time delays. Recently, wewith the use of Eqs(A1)«A3), we may calculate DE’s
successfully applied the DMA to stochastic ensembles withyiven by Eqs(21)~(34). For example, terms includingl (€)

time-delayed regular couplingi33,34. By using our ap- in dy, J/dt, dgy 4/dt, anddpl ,/dt become
proach, we may discuss dynamics of general SW networks

with time delays within the framework of the DMA. In the z (©y ) -2
so—calledscale)—/free(SF) networks such as the World Wide 2 (O™ ) = 2 2. 9360 (% )
Web and the network of citations of scientific papers, the link
connectivity P(K) for a node to interact t& other nodes +§EE 9ol{ X4 C;1)) (A7)
follows a power-law distributiorP(K) ~ K~ with the index i e

v (~2.1-4 [35], in contrast to an exponential distribution

for a largeK in our SW networkgFig. 9). This SF distribu- =23709:141 1+ Yol (A8)
tion probability originates from the two factors, the growth

of nodes and their preferential attachmé¢@b]. Quite re iEECij<@<1i5|(c)>>

C

cently it has been reported that the functional connectivit

P(K) versus the distandé€ in human brain is given by a SF
distribution: P(K) ~K™2 [36]. It is interesting to apply our _2

semianalytical approach to such SF networks. These subjects NZEi: EJ: Ek: 9103 Coji({ i X
raised above are left to our future study.
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APPENDIX: DERIVATION OF EQS. (21)—(36) <N22i Ej (%4l >>
Cc

Substituting Eqs(9) and (13) into Egs.(1)—«4), we get 2]
DE'’s for &x;; and 8y of a neuroni, given by(argument is = @2 > > 91Cojd{ i X
suppressed [

2]
d(:(ll =110 + 186 = y1.0) + T30 — cg + 37 + &, * @El Ej Ek 0ol i &y ey (A1)
(AL)
2J
St ZRaF (N-ZR- D], (AL2)
dXy;
2 = o — .
dt SRSTR R (A2) where ¢, (k=1,2) are new correlation functions defined by

i 1

with b0 = <N—ZZ > <axki<t>5cu>> . k=12. (A13)
PIGERDY [91(t)Coij Oy (1) + (1) 6 Y ¢
j In evaluating Eqs(A7)«A12), we have employed the rela-
+01(1) 6C;; Oy (1) + -, (A3)  tions given by

wheref,=(1/¢!)F andg,=(1/¢!)G'“. DE’s for the cor- 1= iz 2 Coij (A14)

relations are given by
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2 2J
NZZE 22 cojy (A15) <NE <ax1ia1§°>>> =N 2 9GS dDoe,
i c i
(A23)
szz E E COI]COjkCOIk! (A16) :2\]291@1'1’ (A24)

C

2
NZZ<E E E 5C|] 5C]k> y (Al?) <N—ZE 2 Cij<®(li6|}c>>>
i
and the mean-field approximation given by

2J
= 72 2 2 9i{iCil(Bxdxud)de,  (A25)
<<&(K| éx)\j»c Y, )\ + (1 j)[gx,)\éljcij + 7]K,)\5Ij(1 - Cij)]! Pk

(A18) =2Ih[y11+ ZCpl1 1+ (ZR, - ZCy— D)y 4],
’)/K}\ + gK )\CI] + urs )\(1 6|J - Cij)! (Alg) (AZG)
UDidle= 6oy a), - (820 < o2 2 (o) > =S5 3 gouousue
with the Gaussian decoupling approximatid2d]. In Egs. c Pk
(A18) and(A19), v, (. andn,, denote the correlations (A27)
of on-site, a coupled pair and an uncoupled pair, which are
defined by Eqs(12)—(16). The approximations given by Egs. 2J 91
(A18)~«(A20) are consistent with the definition af.\, .\, — 711+ 2R+ (N-ZR, - Dy 4],
and 7, given by Eqs(14)«16), and those ok, given by
Eq. (37). (A28)

The equations of motion o, are similarly calculated
with the use of the relation given by

do, E E ( ) > (A2) (Cij (Mg OXqj) ) = (Cij{( My OXqj e)e (A29)
dt NZ= i C' and Eq.(A19) are employedC, andR, in Egs.(A26) and
, ) (A28) are given by Eqs(56) and(57). Note thatc;; in Egs.
which yield Eqs.(35) and(36). f(A23) (A25), and (A27) depends on the configuration of
Wezhave take2n into account terms up to orders o Couplings whilecy; in Egs.(A7), (A9), and(A11) does not.
O((6%)%), O((éc/2)%), andO(dxde/Z) in Eqs.(21)~36), and  Then we got equations of motions given by EG&L—(34)
up to the order ofO((6x)?) in the term includinga(=f1  jth ¢,=¢,=0 but with C and R which are, respectively,
+3f37y, 1) which plays an important role in stabilizing DE’s replaced byp dependenC, andR, given by Eqs(56) and
[24]. _ _ (57). As mentioned in Sec IV, results calculated with the use
On the contrary, when we adopt an expression given by of such DE’s are not in good agreement with those obtained
by direct simulations because effects of coupling fluctuations
©t) =
RINU) ‘Jz [9a(t)cij %q;(1) + -], (A22)  are not properly included in the formulation mentioned
! above. It is indispensable to take into account effects of the

instead of Eq.(A3), DE’s given by Egs.(A7), (A9), and  coupling heterogeneity expressed &, through the corre-
(Al11) become lation functions¢, and ¢,, as given by Eqs(35) and(36).

where decoupling approximations such as
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