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By extending a dynamical mean-field approximation previously proposed by the author[H. Hasegawa, Phys.
Rev. E 67, 041903(2003)], we have developed a semianalytical theory which takes into account a wide range
of couplings in a small-world network. Our network consists of noisyN-unit FitzHugh-Nagumo neurons with
couplings whose average coordination numberZ may change from localsZ!Nd to global couplingssZ=N
−1d and/or whose concentration of random couplingsp is allowed to vary from regularsp=0d to completely
randomsp=1d. We have taken into account three kinds of spatial correlations: the on-site correlation, the
correlation for a coupled pair, and that for a pair without direct couplings. The original 2N-dimensional
stochasticdifferential equations are transformed to 13-dimensionaldeterministicdifferential equations ex-
pressed in terms of means, variances, and covariances of state variables. The synchronization ratio and the
firing-time precision for an applied single spike have been discussed as functions ofZ andp. Our calculations
have shown that with increasingp, the synchronization isworsebecause of increased heterogeneous couplings,
although the average network distance becomes shorter. Results calculated by our theory are in good agreement
with those by direct simulations.
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I. INTRODUCTION

It is well known that a brain forms complex networks
with nodes (neurons) and links (axons and dendrites). A
small patch of cortex may contain thousands of similar neu-
rons, each connecting with hundreds or thousands of other
neurons in that same patch or in other patches through axons
and dendrites. The underlying dynamics of individual neu-
rons is described by Hodgkin-Huxley-type nonlinear differ-
ential equations(DE’s). Many theoretical studies have been
reported on dynamics of large-scale neuron networks. Exten-
sive numerical calculations have been made by using various
spiking neuron models such as Hodgkin-Huxley(HH) [1],
FitzHugh-Nagumo(FN) [2,3], and Hindmarsh-Rose(HR)
models[4]. These theoretical studies have been performed
with the use of the two approaches: direct simulations and
analytical methods such as the Fokker-Planck equation[5],
the population density method[6,7], and the moment method
[8–11]. Since the computation time of direct simulations is
proportional toN2, simulations for actual network size be-
come difficult, whereN is the size of a given neuron net-
work. The Fokker-Planck equation method is mainly applied
to N=` network with the mean-field and/or diffusion ap-
proximations [12]. The population method has been em-
ployed for a large-scale integrate-and-fire(IF) neuron net-
work [6,7]. The moment method has been applied to FN and
HH neuron models[8–11].

Most of theoretical studies have assumed that couplings in
neuron networks are localsZ!Nd or global sZ=N−1d,
and/or regularsp=0d or randomsp=1d, whereZ and p de-
notes the average coordination number and the concentration
of random couplings, respectively. In real neuron networks,

however, couplings are neither local nor global with the de-
gree of randomness locating between the two extremes of
regular and random couplings. In recent years, much atten-
tion has been paid tosmall-world (SW) networks with the
finite degree of heterogeneity in couplings, which is charac-
terized by the high clustering and the small average distance
between nodes[13–16]. The SW property is realized in vari-
ous kinds of biological, social, and technological systems
such as the electric power grid, the movie-star collabora-
tions, and the neuronal network of the nematode wormC.
elegans[13,14]. Some calculations have been reported for
neural networks of spiking neuron models as well as of
phase models[17–23]. It has been shown that by introducing
the coupling heterogeneity into SW networks, the synchroni-
zation isincreasedbecause the average distance in SW net-
works is shorter than that in regular networks[17–19,21–23].
Recently, however, Nishikawaet al. [20] have claimed that
the synchronization isdecreasedwith including the coupling
heterogeneity in SW networks. Then it has been controver-
sial whether the synchronization in SW networks is better or
worse than in regular networks. These studies on SW net-
works have entirely relied on direct simulations, and it is
desirable to make a study by using an analytical method.

In the previous papers of Refs.[24] and [25] (which are
referred to as I and II), the present author proposed a semi-
analytical dynamical mean-field approximation(DMA )
theory for a study on neuron ensembles(networks) with all-
to-all (global) couplings. In I, DMA was applied to anN-unit
FN neuron network, for which 2N-dimensional stochastic
DE’s are transformed to eight-dimensional deterministic
DE’s expressed by means, variances, and covariances of state
variables. In the subsequent II, DMA was applied to net-
works consisting of general spiking neurons, each of which
is described byM variables. MN-dimensional stochastic
DE’s are transformed toNeq deterministic DE’s whereNeq*Email address: hasegawa@u-gakugei.ac.jp
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=MsM +2d. The DMA theory was successfully applied to a
HH neuron network withNeq=24 in II. Advantages of DMA
are (1) some qualitative properties of networks are derived
without numerical computations, and(2) the computational
time of DMA is much shorter than those of the moment
method[26] and direct simulations. As for the item(2), for
example, the former is thousands of times faster than the
latter for N=100 HH neuron network with 100 trials[25].

The purpose of the present paper is to develop a semiana-
lytical approach for SW neural networks of FN neurons with
general couplings, extending our DMA[24,25]. In I and II,
interactions among neurons are assumed to be all-to-all(glo-
bal) couplings. For DMA to include local couplings in SW
networks, we have taken into account variances and covari-
ances which express three kinds of spatial correlations:(i)
on-site correlation,(ii ) the correlation for a coupled pair, and
(iii ) that for an uncoupled pair without direct couplings. As-
suming that the heterogeneity is small, we have included its
effects in order to discuss the synchronization in SW net-
works.

The paper is organized as follows. In Sec. II, we have
derived DE’s, applying the DMA to SW networks consisting
of FN neurons which are coupled with the average coordina-
tion numberZ. The original 2N-dimensional stochastic DE’s
are transformed to 13-dimensional deterministic DE’s. In
Sec. III A, we report numerical calculations for regular net-
works by changingZ from local sZ!Nd to global couplings
sZ=N−1d. TheZ dependence of the firing-time accuracy and
the synchronization ratio for an applied single spike is dis-
cussed. Numerical calculations for SW networks are reported
in Sec. III B, where the effect of the concentration of random
couplings is discussed. The final Sec. IV is devoted to con-
clusion and discussion.

II. SMALL-WORLD NETWORKS OF FN NEURONS

A. Adopted model and method

We have assumed thatN-unit FN neurons are distributed
on a ring with the average coordination numberZ and the
concentration of random couplingsp. Dynamics of a single
neuroni in a given SW network is described by the nonlinear
DE’s given by

dx1istd
dt

= Ffx1istdg − cx2istd + I i
scdstd + I i

sedstd + jistd, s1d

dx2istd
dt

= bx1istd − dx2istd + e, si = 1 to Nd s2d

with

I i
scdstd = Jo

j

cijG„x1jstd…, s3d

I i
sedstd = AQst − tindQstin + tw − td. s4d

In Eqs. (1)–(4), Ffxstdg=kxstdfxstd−agf1−xstdg, k=0.5, a
=0.1, b=0.015,d=0.003, ande=0 [8,9,24]: x1i and x2i de-
note the fast(voltage) variable and slow(recovery) variable,

respectively:Gsxd stands for the sigmoid function given by
Gsxd=1/h1+expf−sx−ud /agj with thresholdu and widtha:
J the coupling strength:cij the coupling matrix given bycij
=cji =1 for a coupledsi , jd pair and zero otherwise, self-
coupling terms being excludedscii =0d. By changingZ value,
our model given by Eqs.(1)–(4) covers from local couplings
sZ!Nd to global couplingssZ=N−1d. We have studied the
response of neuron networks to an external, single spike in-
put given by I i

sedstd with magnitudeA and spike widthtw
applied at the input timetin, Qsxd being the Heaviside func-
tion. Added white noisesjistd are given by

kjistdl = 0, s5d

kjistdj jst8dl = b2di jdst − t8d, s6d

where the average ofkUsz,tdl for an arbitrary function of
Usz,td is given by

kUsz,tdl =E¯E dzUsz,tdPrszd, s7d

Prszd denoting a probability distribution function for
2N-dimensional random variablesz=shxkijd.

An SW network is made after the Watts-Strogatz model
[13]. Starting from the regular coupling for whichcij ;c0i j ,
Nch couplings amongNZ/2 couplings are randomly modified
such thatc0i j =0 is changed tocij =1 or vice versa. The con-
centration of random couplings is given by

p =
2Nch

NZ
, s8d

which is 0 and 1 for completely regular and random cou-
plings, respectively. We shall take into account the effect of
the heterogeneity given by

dcij

Z
=

1

Z
scij − c0i jd, s9d

assuming it is small.
After I, we will obtain equations of motions for means,

variances, and covariances of state variables. Variables spa-
tially averaged over the ensemble are defined by

Xkstd =
1

No
i

xki, k = 1,2 s10d

and their means by

mkstd = ŠkXkstdl‹c, s11d

where the bracketŠ·‹c denotes the average over the coupling
configuration. As for variances and covariances of state vari-
ables, we consider three kinds of spatial correlations:(i) on-
site correlationsgd, (ii ) the correlation for a coupled pairszd
and (iii ) that for a pair without direct couplingsshd:

kkdxkidxl jllc = 5gk,l, for i = j

zk,l, for i Þ j ,cij = 1

hk,l, for i Þ j ,cij = 0,

s12d

wherek ,l=1,2 and
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dxkistd = xkistd − mkstd. s13d

In Eq. (12) , gk,l, zk,l andhk,l are defined by

gk,lstd =K 1

No
i

kdxkistddxlistdlL
c

, s14d

zk,lstd =K 1

NZo
i
o

j

cijkdxkistddxl jstdlL
c

, s15d

hk,lstd

=K 1

NsN − Z − 1doi
o

j

s1 − di j − cijdkdxkistddxl jstdlL
c

.

s16d

For a later purpose, we also define the spatially averaged
correlation given by

rk,lstd =K 1

N2o
i
o

j

kdxkistddxl jstdlL
c

, s17d

=kkdXkstddXlstdllc, s18d

wheredXkstd=Xkstd−mkstd. It is noted thatgk,l, zk,l, hk,l,
andrk,l are not independent, obeying the sum rule given by

Nrk,l = gk,l + Zzk,l + sN − Z − 1dhk,l. s19d

In order to derive Eqs.(14)–(19), we have employed the
decomposition

1 = di j + s1 − di jdfcij + s1 − cijdg=di j + cij + s1 − di j − cijd,

s20d

with cii =0.
In calculating means, variances, and covariances given by

Eqs.(11) and (14)–(19), we have assumed that(i) the noise
intensity is weak,(ii ) the distribution of state variables takes
the Gaussian form, and(iii ) the coupling heterogeneity of
dcij /Z is small. By using the first assumption, we expand
DE’s given by Eqs.(1)–(4) in a power series of fluctuations
around means. The second assumption may be justified by
some numerical calculations for FN[9,27] and HH neuron
models[28,29]. Based on the third assumption, the effect of
coupling fluctuations has been taken into account up to the
order of O(sdcij /Zd2).

Before closing Sec. II A, we briefly summarize the intro-
duced variables and their meanings as follows:N, the num-
ber of neurons:Z, the average coordination number:p, the
concentration of random couplings:J, the coupling strength:
cij , the coupling matrix between neuronsi and j : Xk, the
spatially average of the fastsk=1d and slowsk=2d variables;
mk, a mean value ofXk; gk,l, zk,l, andhk,l, the correlations
of on-site, a coupled pair, and an uncoupled pair, respec-
tively. Readers who are not interested in mathematical de-
tails, may skip to Sec. II C where a summary of our method
is presented.

B. Equations of motions

After some manipulations, we get the following DE’s(the
argumentt being suppressed; for details, see the Appendix):

dm1

dt
= f0 + f2g1,1− cm2 + JZsg0 + g1f1d + Iext, s21d

dm2

dt
= bm1 − dm2 + e, s22d

dg1,1

dt
= 2sag1,1− cg1,2d + 2JZsg1z1,1+ g0f1d + b2, s23d

dg2,2

dt
= 2sbg1,2− dg2,2d, s24d

dg1,2

dt
= bg1,1+ sa − ddg1,2− cg2,2+ JZsg1z1,2+ g0f2d,

s25d

dr1,1

dt
= 2sar1,1− cr1,2d + S2JZg1

N
D

3fg1,1+ ZRz1,1+ sN − ZR− 1dh1,1g +
b2

N
, s26d

dr2,2

dt
= 2sbr1,2− dr2,2d, s27d

dr1,2

dt
= br1,1+ sa − ddr1,2− cr2,2+ SJZg1

N
D

3fg1,2+ ZRz1,2+ sN − ZR− 1dh1,2g, s28d

dz1,1

dt
= 2saz1,1− cz1,2d + 2Jg1

3fg1,1+ ZCz1,1+ sZR− ZC− 1dh1,1g, s29d

dz2,2

dt
= 2sbz1,2− dz2,2d, s30d

dz1,2

dt
= bz1,1+ sa − ddz1,2− cz2,2+ Jg1

3fg1,2+ ZCz1,2+ sZR− ZC− 1dh1,2g, s31d

dh1,1

dt
= 2sah1,1− ch1,2d+ S 2JZg1

N − Z − 1
Dhg1fsZR− ZC− 1dz1,1

+ sN − 2ZR+ ZCdh1,1g − g0f1j, s32d

dh2,2

dt
= 2sbh1,2− dh2,2d, s33d
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dh1,2

dt
= bh1,1+ sa − ddh1,2− ch2,2+ S JZ

N − Z − 1
D

3hg1fsZR− ZC− 1dz1,2

+ sN − 2ZR+ ZCdh1,2g − g0f2j, s34d

df1

dt
= af1 − cf2 + JZg0dRp, s35d

df2

dt
= bf1 − df2, s36d

with

fkstd =K 1

NZo
i
o

j

kdxidcijlL
c

, k = 1,2, s37d

C =
1

NZ2o
i
o

j
o

k

c0i j c0jkc0ik, s38d

R=
1

NZ2o
i
o

j
o

k

c0i j c0jk, s39d

dRp =K 1

NZ2o
i
o

j
o

k

dcijdcjkL
c

, s40d

wherea= f1+3f3g1,1, f,=s1/, ! dFs,d, g,=s1/, ! dGs,d, C cor-
responds to the clustering coefficient introduced in SW net-
works [13,14], R expresses the coupling connectivity, and
dRp is its fluctuation part, related discussions being given in
Sec. IV.

C. Summary of our method

Equations of motions formkstd, gk,lstd, zk,lstd, hk,lstd,
andrk,lstd are given by Eqs.(21)–(40). In Eqs.(35) and(36),
fkstd sk=1,2d are new correlation functions which appear in
the process of calculating equations of motion ofgk,l, etc.
The factorsC, R, anddRp defined by Eqs.(38)–(40) gener-
ally depend on the geometry of a given neuron network. For
a regular ring with evenZ, we getR=1 andC given by

C =5
0, for Z ø 2

3/4 – 3/2Z, for 4 ø Z , 2N/3

3/4 – 3/2Z + 9/4 −s3N − 9/2d/Z
+ sN2 − 3N + 2d/Z2, for 2N/3 ø Z , N − 1

s1 – 1/Zd for Z = N − 1.

s41d

Figure 1 showsC as a function ofZ/N for N=100, 200, 500,
and 1000. We note thatC,0.75 for 0.1,Z/N,0.7 and that
C→ s1–1/Zd asZ/N→ s1–1/Nd. In the case of global cou-
plings sZ=N−1d, however, we getC=s1–1/Zd independent
of the geometry.dRp defined by Eq.(40), which expresses
fluctuations in heterogeneous couplings, is increased with in-
creasing the concentration of random couplings,p [Fig.
6(a)]. Among the 12 correlations such asgk,l, etc., given by
Eqs.(14)–(17), nine correlations are independent because of

the sum rule given by Eq.(20). In this study, we have chosen
nine correlations ofgk,l, zk,l, andrk,l as independent vari-
ables. Then the original 2N-dimensionalstochasticDE’s
given by Eqs.(1) and (2) have been transformed to 13-
dimensionaldeterministicDE’s.

It is worthwhile to explain the relation between the
present theory and I, where the original 2N-dimensional sto-
chastic DE’s for regular, global couplings are transformed to
eight-dimensional deterministic DE’s. In the present study
for the general coupling, we have to take into accountzk,l
and hk,l, in order to discriminate correlations between a
coupled pair and an uncoupled pair. However, in the limit of
Z=N−1 for regular, global couplings for whichR=1 and
ZC=Z−1,hk,l are not necessary because there are no un-
coupled pairs: prefactors ofsZR−ZC−1d for hk,l in Eqs.
(32) and (34) vanish with fk=0. Then the number of re-
quired DE’s is reduced from 13 to 8. Equations(21)–(28) for
mk, gk,l, andrk,l agree with Eqs.(20)–(27) in I [30].

D. Firing-time accuracy and synchronization

1. Firing-time accuracy

When we solve DE’s given by Eqs.(21)–(36), we may
obtain various quantities relevant to firings in neuron net-

FIG. 1. The clustering coefficientC for a ring with regular cou-
plings sp=0d as a function ofZ/N for N=100, 200, 500, and 1000.
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works. The firing time of a given neuroni is defined as the
time when the variablex1istd crosses the thresholdu from
below:

to, = htux1istd = u; ẋistd . 0j. s42d

It has been shown that the distribution of firing times ofto, is
given by [24]

Z,std , FS t − tf

dto,
D d

dt
S m1

Îg1,1stfd
DQsṁ1d, s43d

→dst − tfd, for g1,1stfd → 0

with

dto, =
Îg1,1stfd

ṁ1

, s44d

whereF expresses the normal distribution function, the av-
erage firing timetf is implicitly defined by m1stfd=u, ṁ1

=ṁ1stfd and the dot denotes the time derivative.
Similarly, the firing time of an averaged variableX1std is

defined as the time when the variableX1std crosses the
thresholdu from below:

tog = htuX1std = u;Ẋ1std . 0j. s45d

The distribution of firing times oftog is given by[24]

Zgstd , FS t − tf

dtog
D d

dt
S m1

Îr1,1stfd
DQsṁ1d, s46d

→dst − tfd for r1,1stfd → 0

with

dtog =
Îr1,1stfd

ṁ1

. s47d

2. Synchronization ratio

We discuss the synchronization in neuron networks, con-
sidering the quantity given by

Rsstd =
1

N2o
i
o

j

kfxistd − xjstdg2l, s48d

=2sg1,1− r1,1d, s49d

which vanishes in the completely synchronous state. From a
comparison of Eqs.(23)–(25) with Eqs. (26)–(28), we note
that

rk,l =
gk,l

N
, for J → 0. s50d

Then, Rsstd given by Eq. (49) becomes Rsstd
=s1–1/Ndg1,1std;Rs0std in the asynchronous state, while
Rsstd=0 in the completely synchronous state. We define the
synchronization ratioat the firing timetf by [24]

Sf = Sstfd, s51d

with

Sstd = 1 −
Rsstd
Rs0std

= SNr1,1std/g1,1std − 1

N − 1
D , s52d

which is 0 and 1 for completely asynchronous and synchro-
nous states, respectively. The synchronization ratio shows
much variety depending on model parameters such as the
coupling strengthsJd, the noise intensitysbd, the size of
cluster sNd, the coordination numbersZd, and the random
concentrationspd, as will be discussed in Sec. III.

III. CALCULATED RESULTS

A. Regular couplings

We have adopted same parameters ofu=0.5, a=0.5, ts
=10, A=0.10,tin=100, andTw=10 as in I[24]. DMA calcu-
lations have been made by solving Eqs.(21)–(36) with the
use of the fourth-order Runge-Kutta method with the time
step of 0.01. We have performed direct simulations by using
also the fourth-order Runge-Kutta method with the time step
of 0.01. Results of direct simulations are averages of 1000
trials for Zø20 (or Nø20) and those of 100 trials otherwise
noticed. All quantities are dimensionless.

First we discuss the case of regular couplingssp=0d, by
changing the average coordination numberZ from local sZ
!Nd to global couplingssZ=N−1d. The plots in Figs.
2(a)–2(c) show firings in anN=100 neuron network with
regular couplings forZ=10, 50, and 99 withb=0.01 and
J=0.002 when a single external spike given by Eq.(4) is
applied. Figures 2(a)–2(c) show that as increasingZ, scatter-
ing of firing times is reduced, which suggests an increase
in the firing accuracy and the synchronization. These are
results of direct simulations with single trials. They are
more clearly discussed with calculations using the DMA.

FIG. 2. (Color online) The plots showing firings in a regular
neuron network forZ= sad10, (b) 50, and(c) 99 calculated by direct
simulations(single trials), and time courses ofSstd for Z= sdd10, (e)
50, and(f) 99 calculated by DMA(solid curves) and direct simula-
tions (dashed curves) (b=0.01,J=0.002,N=100, andp=0.0). Ar-
rows in (d)–(f) denote firing times.
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Figures 2(d)–2(f) show time courses ofSstd calculated in
the DMA for Z=10, 50, and 99, whose magnitudes are in-
creased as increasingZ; note differences of the ordinate
scales in Figs. 2(d)–2(f). The synchronization ratio at firing
times,Sf, is 0.0019, 0.0113, and 0.0295 forZ=10, 50, and
99, respectively, which shows an increased synchrony with
increasingZ.

We will discuss some details of the DMA calculation in
Figs. 3(a)–3(d) which show time courses ofm1, g1,1, z1,1, and
r1,1, respectively, for regular couplings(p=0) with b=0.01,
J=0.002,N=100, andZ=10. Results of DMA expressed by
solid curves are in good agreement with those of direct simu-
lations depicted by dashed curves. Time courses ofm1, g1,1,
and r1,1 shown in Figs. 3(a)–3(d) for local couplingssZ
=10d are not so different from those for global couplings
having been reported in Fig. 1 of I, except for their magni-
tudes. For example, DMA calculations for the local coupling
with Z=10 in the case ofb=0.01, J=0.002, andN=100
show that magnitudes ofg1,1, z1,1, andr1,1 at the firing time
of t=104.44 are 0.271310−2, 0.475310−4, and 0.320
310−4, respectively. In contrast, for the global coupling with
Z=99, magnitudes ofg1,1, z1,1, andr1,1 at the firing time of
t=103.88 are 0.235310−2, 0.693310−4, and 0.921310−4,
respectively.

Figure 4(a) shows theZ dependence ofg1,1, z1,1, andr1,1
at the firing time withJ=0.002,b=0.01, andN=100; filled
and open marks express results of DMA and direct simula-
tions, respectively. Results ofg1,1 and r1,1 of DMA are in-
distinguishable from those of direct simulations. With in-
creasingZ, both z1,1 and r1,1 are increased, whileg1,1 is
slightly decreased, as mentioned above. TheZ dependence of
the firing time tf is plotted in Fig. 4(b), which shows the
faster response for largerZ. This is due to the fact that by an
increasedZ, m1 is increased more rapidly to cross the thresh-
old level ofu. Thenṁ1 at t= tf is increased with increasingZ,
as the chain curve in Fig. 4(c) shows. Figure 4(c) shows that
with increasingZ, the firing-time accuracy ofdto, is im-
proved while that ofdtog is independent ofZ. TheZ depen-
dence of the synchronization is plotted in Fig. 4(d) showing
Sf to be linearly increased for a smallZ. This clearly explains

the larger synchronySf for larger Z, having been shown in
Figs. 2(a)–2(f).

B. SW couplings

Next we discuss the case of SW couplings, by changing
the concentration of random couplingsp. The plots in Figs.
5(a)–5(c) show firings in SW networks forp=0.0, 0.1, and
1.0, respectively, withb=0.005J=0.02,N=100, andZ=10
calculated by direct simulations with single trials, when a
single external spike given by Eq.(4) is applied. In this
subsection, we have adopted a smallerb and a largerJ than
in Sec. III A to get more evident effects ofp. Figures
5(a)–5(c) show that as increasingp, scattering of firing times
is gradually increased, which suggests a decrease in the
firing-time accuracy and the synchronization. These results

FIG. 3. (Color online) Time courses of(a) m1, (b) g1,1, (c) z1,1,
and (d) r1,1 for b=0.01,J=0.002,N=100, Z=10, andp=0, solid
and dashed curves denoting results of DMA and direct simulations,
respectively. At the bottom of(a), an input signal is plotted.

FIG. 4. (Color online) The Z dependence of(a) the correlations
of g1,1 (circles), z1,1 (triangles), andr1,1 (squares) at the firing time,
(b) the firing timestf, (c) the firing-time accuracy ofdto, (circles),
dtog (squares), andṁ1 (triangles), and(d) the synchronization ratio
at the firing time,Sf, for b=0.01,J=0.002, andN=100: filled and
open marks denote results of DMA and direct simulations, respec-
tively. Results ofz1,1 and ṁ1 are only for DMA.

FIG. 5. (Color online) The plots showing firings in a small-
world neuron network forp= sad0.0, (b) 0.1, and(c) 1.0 calculated
by direct simulations(single trials), and time courses ofSstd for
p5 (d) 0.0, (e) 0.1, and(f) 1.0 calculated by DMA(solid curves)
and direct simulations(dashed curves) (b=0.005, J=0.02, z=10,
andN=100). Arrows in (d)–(f) denote firing times.
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are more clearly seen in calculations with the use of DMA.
Figures 5(d)–5(f) show time courses ofSstd for p=0, 0.1, and
1.0, calculated in the DMA. The synchronization ratio at
firing times Sf is 0.0256, 0.0224, and 0.0114, forp=0, 0.1,
and 1.0, respectively. AlthoughSf for p=0.1 is nearly equal
to that forp=0.0, the time course ofSstd for p=0.1 is rather
different from that forp=0.0.

This decrease inSf with increasingp mainly arises from
an increaseddRp, as shown in Fig. 6(a) where thep depen-
dence ofdRp is plotted for Z=10, 20, and 50 of a given
ring with N=100. With increasingp, dRp is linearly in-
creased asdR~p/Z for a small p. Figure 6(b) will be ex-
plained in Sec. IV.

Figure 7(a) shows thep dependence ofg1,1, z1,1, andr1,1
at the firing time with J=0.02, b=0.005, N=100, and
Z=10; filled and open marks express results of DMA
and direct simulations, respectively. Atp=0.0,g1,1, z1,1, and
r1,1 are 0.671310−3, 0.131310−3, and 0.239310−4, re-
spectively. In contrast, atp=1.0, they are 0.109310−2,
0.144310−3, and 0.232310−4, respectively. With increasing
p, g1,1 is increased, whiler1,1 and z1,1 are almost constant.
The difference between thep dependences ofg1,1, r1,1, and

z1,1 arises from the fact thatdg1,1/dt in Eq. (23) has a con-
tribution from f1 while dr1,1/dt and dz1,1/dt in Eqs. (26)
and (29) have no direct contributions from it. Figure 7(b)
shows that the firing time oftf =103.88 is independent ofp,
which is in accordance with a constantṁ1 shown in Fig. 7(c).
Figure 7(c) shows that with increasingp, the firing-time ac-
curacy ofdto, becomes worse because of an increasedg1,1
while that ofdtog is independent ofp. The p dependence of
Sf is depicted in Fig. 7(d), which shows that the synchrony is
decreased with increasingp. This clearly explains results of
smallerSf for largerp, having been shown in Figs. 5(a)–5(f).

IV. CONCLUSION AND DISCUSSION

Generalizing a phenomenological analysis adopted in I
[24] based on calculated results of DMA, we have tried to
get an analytical expression forSf. From calculated results
discussed in the previous section, we expandg1,1 andr1,1 in
a series ofJZ andp:

g1,1= g0f1 − a1JZs1 − a2pd + ¯g, s53d

r1,1=
g0

N
s1 + b1JZ+ ¯ d, s54d

wherego~b2, anda1, a2, andb1 are positive coefficients. We
have obtained an expression forg1,1 given by Eqs.(53), be-
cause the effect ofp should vanish forJ=0 or Z=0. Substi-
tuting Eqs.(53) and (54) into Eq. (52), we get

Sf = S †a1s1 − a2pd + b1‡

N − 1
DJZ+ ¯ . s55d

The expression forSf given by Eq.(55) well explains the
behavior shown in Figs. 4(d) and 7(d). Dependences of the
quantities onN, Z, J, andb for local regular couplings are
the same as those for all-to-all couplings having discussed in
I. Typical examples ofN dependence of various quantities
are shown in Figs. 8(a)–8(d). Figures 8(a) and 8(b) show that
r1,1~N−1 while g1,1, z1,1 and tf are independent ofN, which
yieldsdt0g~N−1/2 anddt0,~N0, as shown in Fig. 8(c). Figure
8(d) shows thatSf ~N−1 both for local and global couplings,
expressing that the synchronization is more easily realized in
smaller networks than in larger ones.

In an early stage of this study, we obtained DE’s given by
Eqs.(21)–(34) with f1=f2=0, but withC andR which are
replaced byCp andRp, respectively, given by[for details see
after Eq.(A22) in the Appendix]

Cp =K 1

NZ2o
i
o

j
o

k

cijcjkcikL
c

, s56d

Rp =K 1

NZ2o
i
o

j
o

k

cijcjkL
c

. s57d

In this formulation, the effect of the coupling heterogeneity
is included in thep-dependent clustering coefficientCp and
coupling connectivityRp. The clustering coefficientCp de-
notes an averaged fraction for given three nodes to be mutu-
ally coupled[13,14]. The p dependence ofCp is depicted in

FIG. 6. The p dependence of(a) the factordRp and (b) the
clustering coefficientCp, for Z=10, 20, and 50 withN=100.

FIG. 7. (Color online) The p dependence of(a) the correlations
of g1,1 (circles), z1,1 (triangles), andr1,1 (squares) at the firing time,
(b) the firing timestf, (c) the firing-time accuracy ofdto, (circles),
dtog (squares), andṁ1 (triangles), and(d) the synchronization ratio
at the firing time,Sf, for b=0.005, J=0.02, N=100, andZ=10:
filled and open marks denote results of DMA and direct simula-
tions, respectively. Results ofz1,1 and ṁ1 are only for DMA.
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Fig. 6(b) which shows that with increasingp, Cp is decreased
and approachesCp=Z/N at p=1. In contrast, the coupling
connectivityRp expresses an averaged fraction for given two
nodes, which are not necessarily coupled, to have a common
neighboring node.Rp in Eq. (57) may be rewritten as

Rp =
1

Z2o
K

K2PsKd ;
1

Z2K2̄, s58d

where the overline denotes the average overPsKd expressing
the probability for a given neuron to haveK couplings[31].
It is easy to see thatRp is given byRp=1+dRp [Eqs.(60) and
(61)], the p dependence ofdRp being plotted in Fig. 6(a).
Unfortunately, results calculated with the use ofCp and Rp
for finite p were not in good agreement with those of direct
simulations because effects of coupling heterogeneity are not
properly taken into account in such DE’s.

After several tries, we have obtained DE’s having been
given by Eqs.(21)–(36). C, R, and dCp given by Eqs.
(38)–(40) may be expressed in terms ofCp andRp as [31]

C = C0, s59d

R= R0 = 1, s60d

dRp = Rp − R0 =
1

Z2sK − K̄d2, s61d

with Z=K̄. Figure 9 showsPsKd for p=0.0, 0.1, 0.2, and 1.0
with N=100 andZ=10. In the limit of p=0, PsKds=dK,Zd is
the delta function. With increasingp, PsKd has the distribu-
tion centered atK=Z. In the limit of p=1, PsKd approaches
the Poisson distribution[16]. Figure 6(a) shows that with
increasingp, dRp is increased, whileCp is decreased as
shown in Fig. 6(b). An increaseddRp yields an increase in
g1,1, by whichSf is decreased anddto, is increased. It should

be noted that effects of heterogeneous couplings are taken
into account bydRp through the correlation functionsf1 and
f2 in Eqs. (35) and (36), which play important roles in dy-
namics of SW networks.

To summarize, we have developed a semianalytical theory
for SW networks of spiking FN neurons, including three
kinds of spatial correlations: correlations of on-site, a
coupled pair, and an uncoupled pair. By changingZ and p,
we have performed model calculations of the response of the
network to an external single spike. It has been shown that
(i) whenZ is increased, the synchronization ratioSf and the
firing-time accuracydto, are improved[Figs. 4(c) and 4(d)],
which arises from a decrease ing1,1 and an increase inr1,1,
and(ii ) whenp is increased, bothSf anddto, become worse
[Figs. 7(c) and 7(d)] due to an increase ing1,1 induced by
fluctuations in the coupling heterogeneity.

Item (i) is easily understood. The result forSf in item (ii )
is consistent with that of Ref.[20]. It, however, contradicts
some calculations[17–19,21–23], which have claimed that
the synchronization in SW networks is better than that in
regular networks, since communication between neurons is
more efficient because of the shorter characteristic path
length L (as for thep dependence ofL, see Fig. 2 of Ref.
[13]). Our semianalytical theory with the use of the DMA,
which is valid for weak noisesb!1d and small coupling
heterogeneitysdRp!1d, has shown that the synchrony of
SW networks depends onR, C, and dRp given by Eqs.
(38)–(40), but it is not affected by the average path lengthL.
In particular,dRp, f1, andf2 have been shown to play cru-
cial roles in the dynamics of SW neural networks. Although
item (ii ) discussed above relies on the definition of the syn-
chronization ratio ofSstd given by Eq.(52), this conclusion
is not changed even if we adopt an alternative measure for
the synchrony. For example, when we employRs given by
Eq. (49), Rs is increased with increasingp because of an
increasedg1,1, which again signifies the worse synchroniza-
tion in SW networks. The semianalytical theory developed in
this paper can be applied not only to SW neural networks but
also to a wide class of complex SW networks. When we
apply our theory to a general SW network in which the dy-
namics of each node is described byM-dimensional stochas-
tic DE’s, we getNeq-dimensional deterministic DE’s where
Neq=Ms3M +7d /2. For example,Neq=5 for Langevin model
sM =1d, Neq=13 for FN modelsM =2d, andNeq=38 for HH

FIG. 8. (Color online) TheN dependence of(a) the correlations
of g1,1 (circles), z1,1 (triangles), andr1,1 (squares) at the firing time,
(b) the firing timestf, (c) the firing-time accuracy ofdto, (circles)
and dtog (squares), and (d) the synchronization ratio at the firing
time Sf (b=0.01, J=0.002, p50, N=100, andZ=10): filled and
open marks denote results of DMA and direct simulations, respec-
tively. In (d) results for global couplingssZ=N−1d are also shown.

FIG. 9. The probabilityPsKd for a given neuron to haveK
couplings forp=0.0, 0.1, 0.2, and 1.0 withN=100 andZ=10 in a
SW ring.
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model sM =4d. Items (i) and (ii ) [and also Eq.(55)] which
have been derived for FN neuron model, are expected to hold
for any SW network.

The present approach shares in its advantages with the
original DMA previously proposed in I:(1) some results may
be derived without numerical calculations because of its
semianalytical nature, and(2) a computational time for a
large-scale system by DMA is much shorter than that by
direct simulations. By extending the ring geometry adopted
in this paper, we may discuss the response of more realistic
synfire-chain-type SW networks[24,32]. In the present pa-
per, we have neglected the transmission time delay. Because
the average path lengthL becomes shorter by the appearance
of shortcuts[13–16], the response speed is expected to be
improved in SW networks with time delays. Recently, we
successfully applied the DMA to stochastic ensembles with
time-delayed regular couplings[33,34]. By using our ap-
proach, we may discuss dynamics of general SW networks
with time delays within the framework of the DMA. In the
so-calledscale-free(SF) networks such as the World Wide
Web and the network of citations of scientific papers, the link
connectivity PsKd for a node to interact toK other nodes
follows a power-law distributionPsKd,K−g with the index
g s,2.1–4d [35], in contrast to an exponential distribution
for a largeK in our SW networks(Fig. 9). This SF distribu-
tion probability originates from the two factors, the growth
of nodes and their preferential attachment[35]. Quite re-
cently it has been reported that the functional connectivity
PsKd versus the distanceK in human brain is given by a SF
distribution: PsKd,K−2 [36]. It is interesting to apply our
semianalytical approach to such SF networks. These subjects
raised above are left to our future study.
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APPENDIX: DERIVATION OF EQS. (21)–(36)

Substituting Eqs.(9) and (13) into Eqs. (1)–(4), we get
DE’s for dx1i anddx2i of a neuroni, given by(argumentt is
suppressed)

ddx1i

dt
= f1dx1i + f2sdx1i

2 − g1,1d + f3dx1i
3 − cdx2i + dI i

scd + j j ,

sA1d

ddx2j

dt
= bdx1j − ddx2j , sA2d

with

dI i
scdstd = Jo

j

fg1stdc0i jdx1jstd + g0stddcij

+ g1stddcijdx1jstd + · g, sA3d

where f,=s1/, ! dFs,d and g,=s1/, ! dGs,d. DE’s for the cor-
relations are given by

dgk,l

dt
=K 1

No
i
KFdxkiSddxli

dt
D + Sddxki

dt
DdxliGLL

c

,

sA4d

dzk,l

dt
=K 1

NZo
i
o

j

cijKFdxkiSddxl j

dt
D + Sddxk j

dt
DdxliGLL

c

,

sA5d

drk,l

dt
=K 1

N2o
i
o

j
KFdxkiSddxl j

dt
D + Sddxk j

dt
DdxliGLL

c

.

sA6d

With the use of Eqs.(A1)–(A3), we may calculate DE’s
given by Eqs.(21)–(34). For example, terms includingdI i

sed

in dg1,1/dt, dz1,1/dt, anddr1,1/dt become

K 2

No
i

kdx1idI i
scdlL

c

=
2J

N o
i
o

j

g1c0i jkkdx1idx1jllc

+
2J

N o
i
o

j

g0kkdx1idcijllc, sA7d

=2JZfg1z1,1+ g0f1g, sA8d

K 2

NZo
i
o

j

cijkdx1idI j
scdlL

c

=
2J

NZo
i
o

j
o

k

g1c0i j c0jkkkdx1idx1kllc

+
2J

NZo
i
o

j
o

k

g0c0i jkkdx1idcjkllc, sA9d

=2Jg1fg1,1+ ZCz1,1+ sZR− ZC− 1dh1,1g, sA10d

K 2

N2o
i
o

j

kdx1idI j
scdlL

c

=
2J

N2o
i
o

j
o

k

g1c0jkkkdx1idx1kllc

+
2J

N2o
i
o

j
o

k

g0kkdx1idcjkllc, sA11d

=
2JZg1

N
fg1,1+ ZRz1,1+ sN − ZR− 1dh1,1g, sA12d

wherefk sk=1,2d are new correlation functions defined by

fkstd =K 1

NZo
i
o

j

kdxkistddcijlL
c

, k = 1,2. sA13d

In evaluating Eqs.(A7)–(A12), we have employed the rela-
tions given by

1 =
1

NZo
i
o

j

c0i j , sA14d
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R=
1

NZ2o
i
o

j
o

k

c0i j c0jk, sA15d

C =
1

NZ2o
i
o

j
o

k

c0i j c0jkc0ik, sA16d

dRp =
1

NZ2Ko
i
o

j
o

k

dcijdcjkL
c

, sA17d

and the mean-field approximation given by

kkdxkidxl jllc = gk,ldi j + s1 − di jdfzk,ldi j cij + hk,ldi js1 − cijdg,

sA18d

=gk,ldi j + zk,lcij + hk,ls1 − di j − cijd, sA19d

kkdxk,idcjkllc = fkcjksdi j + dikd, sA20d

with the Gaussian decoupling approximations[24]. In Eqs.
(A18) and (A19), gk,l, zk,l, andhk,l denote the correlations
of on-site, a coupled pair and an uncoupled pair, which are
defined by Eqs.(12)–(16). The approximations given by Eqs.
(A18)–(A20) are consistent with the definition ofgk,l, zk,l,
andhk,l given by Eqs.(14)–(16), and those offk given by
Eq. (37).

The equations of motion offk are similarly calculated
with the use of the relation given by

dfk

dt
=K 1

NZo
i
o

j
KSddxki

dt
DdcijLL

c

, sA21d

which yield Eqs.(35) and (36).
We have taken into account terms up to orders of

O(sdxd2), O(sdc/Zd2), andOsdxdc/Zd in Eqs.(21)–(36), and
up to the order ofO(sdxd4) in the term includingas=f1

+3f3g1,1d which plays an important role in stabilizing DE’s
[24].

On the contrary, when we adopt an expression given by

dI i
scdstd = Jo

j

fg1stdcijdx1jstd + ·g, sA22d

instead of Eq.(A3), DE’s given by Eqs.(A7), (A9), and
(A11) become

K 2

No
i

kdx1idI i
scdlL

c

.
2J

N o
i
o

j

g1kcijkkdx1idx1jllclc,

sA23d

=2JZg1z1,1, sA24d

K 2

NZo
i
o

j

cijkdx1idI j
scdlL

c

.
2J

NZo
i
o

j
o

k

g1kcijcjkkkdx1idx1kllclc, sA25d

=2Jg1fg1,1+ ZCpz1,1+ sZRp − ZCp − 1dh1,1g,

sA26d

K 2

N2o
i
o

j

kdx1idI j
scdlL

c

.
2J

N2o
i
o

j
o

k

g1kcjkkkdx1idx1kllclc,

sA27d

=
2JZg1

N
fg1,1+ ZRpz1,1+ sN − ZRp − 1dh1,1g,

sA28d

where decoupling approximations such as

Šcijkdx1idx1jl‹c . kcijkkdx1idx1jllclc sA29d

and Eq.(A19) are employed.Cp and Rp in Eqs. (A26) and
(A28) are given by Eqs.(56) and (57). Note thatcij in Eqs.
(A23), (A25), and (A27) depends on the configuration of
couplings whilec0i j in Eqs.(A7), (A9), and(A11) does not.
Then we got equations of motions given by Eqs.(21)–(34)
with f1=f2=0 but with C and R which are, respectively,
replaced byp dependentCp andRp given by Eqs.(56) and
(57). As mentioned in Sec. IV, results calculated with the use
of such DE’s are not in good agreement with those obtained
by direct simulations because effects of coupling fluctuations
are not properly included in the formulation mentioned
above. It is indispensable to take into account effects of the
coupling heterogeneity expressed bydRp through the corre-
lation functionsf1 andf2, as given by Eqs.(35) and (36).
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